Skip to content

News Center | Georgia Institute of Technology Georgia Institute of Technology

Search

Search form

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • News Home
  • Campus Map
  • Directory
  • Offices

News Center

Menu
Close
  • Calendar
  • Categories
    • Business and Economic Development
    • Campus and Community
    • Earth and Environment
    • Health and Medicine
    • Science and Technology
    • Society and Culture
    • Feature Stories
  • Media Contacts
  • Experts
    • Find an Expert
    • Featured Expert
  • Daily Digest
  • The Whistle
    • Home
    • Classifieds
    • Archives
  • Social Media
  • Subscribe
  • You are here:
  • GT Home
  • Georgia Tech NewsCenter
  • Home
  • Georgia Tech Develops Inkjet-Based Circuits at Fraction of Time and Cost

Science and Technology

Georgia Tech Develops Inkjet-Based Circuits at Fraction of Time and Cost

November 5, 2013 • Atlanta, GA

Printing with Silver Nanoparticle Ink
Click image to enlarge

Silver nanoparticle ink is injected into an empty cartridge and used in conjunction with an off-the-shelf inkjet printer to enable ‘instant inkjet circuit’ prototyping.

Download Image
MORE PHOTOS

Researchers from Georgia Tech, the University of Tokyo and Microsoft Research have developed a novel method to rapidly and cheaply make electrical circuits by printing them with commodity inkjet printers and off-the-shelf materials. For about $300 in equipment costs, anyone can produce working electrical circuits in the 60 seconds it takes to print them.

The technique, called instant inkjet circuits, allows the printing of arbitrary-shaped conductors onto rigid or flexible materials and could advance the prototyping skills of non-technical enthusiasts and novice hackers.

“We believe there is an opportunity to introduce a new approach to the rapid prototyping of fully custom-printed circuits,” said Gregory Abowd, Regents’ Professor in the School of Interactive Computing at Georgia Tech and an investigator in the study. “Unlike existing methods for printing conductive patterns, conductivity in our technique emerges within a few seconds and without the need for special equipment.”

Recent advances in chemically bonding metal particles allowed the researchers to use silver nanoparticle ink to print the circuits and avoid thermal bonding, or sintering, a time-consuming and potentially damaging technique due to the heat. Printing the circuits on resin-coated paper, PET film and glossy photo paper worked best. Researchers also made a list of materials to avoid, such as canvas cloths and magnet sheets.

“Everything we introduced in our research is available in the market and makes it possible for people to try this at home,” said Yoshihiro Kawahara, Associate Professor at the University of Tokyo and the primary investigator who developed the methodology while in Atlanta. “The method can be used to print circuit boards, sensors and antennas with little cost, and it opens up many new opportunities.”

To make the technique possible, researchers optimized commercially available tools and materials including printers, adhesive tape and the silver ink. Designing the circuit itself was accomplished with desktop drawing software, and even a photocopy of a drawing can produce a working circuit.

Once printed, the circuits can be attached to electronic components using conductive double-sided tape or silver epoxy adhesive, allowing full-scale prototyping in mere hours. The homemade circuits might allow tinkerers to quickly prototype crude calculators, thermostat controls, battery chargers or any number of electronic devices.

“Using this technology in the classroom, it would be possible to introduce students to basic electronics principles very cheaply, and they could use a range of electronic components to augment the experience,” said Steve Hodges, a team member from Microsoft Research.

To show the capabilities of the new technique for capacitive touch sensing - the interaction prominent in smartphone interfaces - and the flexibility of the printed circuits, the researchers attached a capacitive ribbon with embedded inkjet-printed circuits into a drinking glass. The capacitive ribbon sensor formed to the contour of the glass and, when connected to a micro controller, was able to measure how much liquid was left in the glass.

The details for replicating the process were presented at the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2013) in Zurich, Switzerland, Sept. 8-12. The research “Instant Inkjet Circuits: Lab-based Inkjet Printing to Support Rapid Prototyping of UbicComp Devices” won a best paper award at the conference and can be found here: http://dl.acm.org/citation.cfm?id=2493486.

 

Additional Photos

  • Inkjet-based Circuit
     

    Inkjet-based Circuit

    A single-sided wiring pattern for an Arduino micro controller was printed on a transparent sheet of coated PET film.

    Download Image

Contact Information

Joshua Preston

jpreston@cc.gatech.edu

678.231.0787

Categories

Science and Technology

News Categories

  • Business and Economic Development
  • Campus and Community
  • Earth and Environment
  • Health and Medicine
  • Science and Technology
  • Society and Culture

Expert Voices

James Wray

James Wray (Photo Fitrah Hamid)

More Hints of Life on Ancient Mars
James Wray
School of Earth and Atmospheric Sciences
Mariel Borowitz

Photo by Rob Felt

Half of Earth’s satellites restrict use of climate data
Mariel Borowitz
Sam Nunn School of Int'l Affairs

Featured Videos

Seth Osekre, a custodian in Facilities Management, follows safety protocols when cleaning. (Video by Allison Carter)

2020 graduate TJ Weiler talks about his journey to earning a Georgia Tech degree.

Georgia Tech Resources

  • Offices & Departments
  • News Center
  • Campus Calendar
  • Special Events
  • GreenBuzz
  • Institute Communications
  • Visitor Resources
  • Campus Visits
  • Directions to Campus
  • Visitor Parking Information
  • GTvisitor Wireless Network Information
  • Georgia Tech Global Learning Center
  • Georgia Tech Hotel & Conference Center
  • Barnes & Noble at Georgia Tech
  • Ferst Center for the Arts
  • Robert C. Williams Paper Museum

Colleges, Instructional Sites & Research

  • Colleges
  • College of Computing
  • College of Design
  • College of Engineering
  • College of Sciences
  • Ivan Allen College of Liberal Arts
  • Scheller College of Business
  • Instructional Sites
  • Georgia Tech-Lorraine
  • Georgia Tech-Savannah
  • Georgia Tech-Shenzhen
  • Georgia Tech Online
  • Professional Education
  • The Language Institute
  • Global Footprint
  • Global Engagement
  • Research
  • Georgia Tech Research Institute
  • Research at Georgia Tech
  • Executive Vice President for Research

Student & Parent Resources

  • Student Resources
  • Apply
  • BuzzPort
  • Buzzcard
  • Career Center
  • Co-ops & Internships
  • Commencement
  • Library
  • Student Life
  • Student Entrepreneurship
  • Study Abroad
  • T-Square
  • Parent Resources
  • Parent and Family Programs
  • Dean of Students
  • Scholarships & Financial Aid

Employee, Alumni, & Other Resources

  • Employees
  • Administration and Finance
  • Advising & Teaching
  • Faculty Affairs
  • Faculty Hiring
  • Human Resources
  • Office of the Provost
  • TechWorks
  • Alumni
  • Alumni Association
  • Alumni Career Services
  • Giving Back to Tech
  • Outreach
  • Startup Companies
  • Economic Development
  • Industry Engagement
  • Government & Community Partners
  • Professional Education
Map of News Center | Georgia Institute of Technology

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: (404) 894-2000

  • Contact Us
  • Site Feedback
  • Tech Lingo
  • Emergency Information
  • Legal & Privacy Information
  • Human Trafficking Notice
  • Accessibility
  • Accountability
  • Accreditation
  • Employment
Georgia Tech

© Georgia Institute of Technology