Instrument Reveals Quartet of Graphene Electron States

Using a one-of-a-kind instrument designed and built at the National Institute of Standards and Technology (NIST), researchers have "unveiled" a quartet of graphene's electron states and discovered that electrons in graphene can split up into an unexpected and tantalizing set of energy levels when exposed to extremely low temperatures and extremely high magnetic fields.

Reported Sept. 9 in the journal Nature, the new research raises several intriguing questions about the fundamental physics of this exciting material and reveals new effects that may make graphene even more powerful than previously expected for practical applications.

Led by NIST Fellow Joseph Stroscio, the research team included scientists from the Georgia Institute of Technology, the University of Maryland, Seoul National University, and the University of Texas at Austin.

Graphene is one of the simplest materials -- a single-atom-thick sheet of carbon atoms arranged in a honeycomb-like lattice -- yet it has many remarkable and surprisingly complex properties. Measuring and understanding how electrons carry current through the sheet is a key to achieving its technological promise in wide-ranging applications, including high speed electronics and sensors.

For example, the electrons in graphene act as if they have no mass and are almost 100 times more mobile than in silicon. Moreover, the speed with which electrons move through graphene is not related to their energy, unlike materials such as silicon where more voltage must be applied to increase their speed, which creates heat that is detrimental to most applications.

To fully understand the behavior of graphene's electrons, scientists must study the material under an extreme environment of ultra-high vacuum, ultra-low temperatures, and large magnetic fields. Under these conditions, the graphene sheet remains pristine for weeks.

NIST has recently constructed the world’s most powerful and stable scanning-probe microscope, with an unprecedented combination of low temperature (as low as 10 millikelvin, or 10 thousandths of a degree above absolute zero), ultra-high vacuum, and high magnetic field. In the first measurements made with this instrument, the international team has used its power to resolve the finest differences in the electron energies in graphene, atom-by-atom.

"Going to this resolution allows you to see new physics," said Young Jae Song, a postdoctoral researcher who helped develop the instrument at NIST and make these first measurements.

And the new physics the team saw raises a few more questions about how the electrons behave in graphene than it answers.

Because of the geometry and electromagnetic properties of graphene's structure, an electron in any given energy level populates four possible sublevels, called a "quartet." Theorists have predicted that this quartet of levels would split into different energies when immersed in a magnetic field, but until recently there had not been an instrument sensitive enough to resolve these differences.

"When we increased the magnetic field at extreme low temperatures, we observed unexpectedly complex quantum behavior of the electrons," said NIST Fellow Joseph Stroscio.

What is happening, according to Stroscio, appears to be a "many-body effect" in which electrons interact strongly with one another in ways that affect their energy levels.

One possible explanation for this behavior is that the electrons have formed a "condensate" in which they cease moving independently of one another and act as a single coordinated unit.

The new experiments also showed surprising stability in the quartet states, an issue that warrants further study, said Phillip First, a professor in Georgia Tech's School of Physics and one of the study's co-authors.

"The experiment shows that these magnetic configurations become especially stable when any one of the quartet states is completely filled with electrons, which indicates the importance of many-body correlations," he said. "However, the most surprising thing is the observation of new stable states that occur when a quartet state is exactly half filled. That's pretty remarkable, and we still need an explanation."

Graphene has attracted strong interest as a potential material for future electronic devices, and this new work reinforces that expectation.

"If our hypothesis proves to be correct, it could point the way to the creation of smaller, very-low-heat producing, highly energy efficient electronic devices based upon graphene," said Shaffique Adam, a postdoctoral researcher who assisted with theoretical analysis of the measurements.

In addition to First, Georgia Tech researchers contributing to the paper included Walt de Heer, Yike Hu and David Torrance. The research was supported in part by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD)(KRF-2006-214-C00022), the National Science Foundation (DMR-0820382 [MRSEC], DMR-0804908, DMR-0606489), the Welch Foundation and the Semiconductor Research Corporation (NRI-INDEX program).

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Media Relations Contacts: Mark Esser, NIST, (301-975-8735)(mark.esser@nist.gov) or John Toon, Georgia Tech, (404-894-6986)(jtoon@gatech.edu).

Writer: Mark Esser

Map of Georgia Tech

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: 404-894-2000