Researchers Identify Genes for Thiostrepton, a Powerful Antibiotic

Work Could Set Stage for Making the Drug More Useful

Researchers at the Georgia Institute of Technology have identified the genetic machinery responsible for synthesizing thiostrepton, a powerful antibiotic produced by certain bacteria. Though effective against the dangerous MRSA (methicillin-resistant Staphylococcus aureus) and vancomycin-resistant enterococci, thiostrepton currently has only limited applications in humans because it is not water soluble.

Identification of the gene cluster responsible for producing thiostrepton sets the stage for genetic manipulations that could make the drug more useful by improving its water solubility, potentially providing a new tool in the high-stakes battle against bacteria. Beyond the possible medical applications, the research produced a scientific surprise: thiostrepton is derived from a genetically encoded peptide that undergoes no fewer than 19 different modifications, one of the most complex such processes known